5. Mounting

The mounting method is one of the most critical factors for measuring vibration. A rigid attachment is essential for avoiding false readings and data.

Depending on the type of machine and position, different mounting methods could be used. To get the best results from the DynaPredict solution, screw mounting is recommended. To do this, the installation surface must be prepared first, as described below.

 

Screw Mounting

Before choosing this mounting method, check that the installation point on the equipment is thick enough for drilling. If so, follow the step-by-step procedure below

 

Drilling the Machine

Drill a threaded hole with an M6x1 threaded tap (supplied in kits with 21 DynaLoggers) at the point of measurement, at least 15mm deep.

Cleaning

Using a wire brush or fine sandpaper, clean any solid particles and scale on the surface of the measurement point.

After surface preparation, the DynaLogger attachment process should begin.

DynaLogger attachment

Position the DynaLogger at the measurement point so that the base of the device is completely supported by the installation surface. Once this is done, tighten the screw and spring washer* supplied with the product, applying a tightening torque of 11Nm.

* Use of the spring washer is critical to achieving reliable results.


Adhesive Mounting

Preparation of the Adhesive

The most suitable adhesives for this type of fixation, according to tests conducted by Dynamox, are the Scotch Weld DP-8810 or DP-8405 structural adhesives from 3M. Follow the preparation instructions described in the manual of the adhesive itself.

Dynalogger Attachment

Apply the glue so that it covers the DynaLogger’s entire bottom surface, completely filling the center hole. Apply the glue from the middle to the edges. 


DynaLogger installation with glue fixation

Press the DynaLogger on the measuring point, orienting the axes (drawn on the product label) in the most appropriate way.

Wait for the curing time indicated in the manual of the glue manufacturer itself, in order to guarantee the good fixation of the DynaLogger.

4. Positioning

Before carrying out the physical installation of the sensors on the machines, here are a few recommendations:

The first step, in the case of explosive atmospheres, is to consult possible restrictions on the product datasheet.

Regarding to vibration and temperature parameter measurements, these should be taken on rigid parts of the machinery. Installation on fins and in fuselage regions should be avoided, as these may present resonances, attenuate the signal, and dissipate heat. In addition, the device should preferably be positioned on a non-rotating part of the machine.

Since the DynaLoggers take readings on three orthogonal axes, they can be installed in any angular direction. However, it is recommended that one of the axes (X,Y,Z) be aligned with the machine shaft.


Left: DynaLogger TcA+. Right: DynaLogger HF
 

The images above show the orientation of the DynaLogger axes. This can also be seen on the label attached to the devices. The correct positioning of the device should take into account the axis and orientation of the machine. The image below shows a DynaLogger positioned on an electric motor.
 


X=Axial; Y=Horizontal; Z=Radial

The images above show the orientation of the DynaLogger axes. This can also be seen on the label attached to the devices. The correct positioning of the device should take into account the axis and orientation of the machine.

  1.  The DynaLogger must be installed in a rigid part of the machine, avoiding regions that may present localized resonance;
  2. Preferably, the DynaLogger should be centered in relation to critical components, such as bearings;
  3. It is recommended to keep the DynaLogger at a fixed point, i.e., to define a definite installation for each device in order to obtain repeatability in measurements and a history of quality data;
  4. It is recommended to verify that the surface temperature of the monitoring point is within the recommended limits (-10ºC to 84ºC) for the use of DynaLoggers. Using the DynaLoggers at temperatures outside the specified range will void the product warranty;

Regarding the actual installation locations, we have created a suggestion guide for the most common machine types. 

3. Structuring the Asset Tree

Before placing sensors in the field, it is recommended to ensure that the asset tree (hierarchical structure) is properly created, with the monitoring points already standardized waiting for the sensor that will be associated to it. To learn all the details and understand how to perform the asset tree structuring process, please read the article Asset Tree Manegement.

 

This facilitates the work in the field and ensures that the points are registered in the correct structure.

 The asset tree structure should be defined by the customer and, preferably, follow the standard already used by the company in ERP software (SAP, for example).

After creating the asset tree via the Web Platform, the user should ideally also register the monitoring point (called the spot) in the tree structure, before going into the field to perform the physical installation of the sensors.

The image below shows an example of an asset tree:

[EN]asset_tree.png

With these procedures completed, the user can finally go into the field to perform the physical installation of the sensors on the machines and components registered in the asset tree.  

After finishing these procedures, the user can finally go into the field and perform the physical installation of the sensors on the machines and components registered in the asset tree.

 More details regarding this process are present in the following articles of this section.

 

2. Acessing the System

Install Mobile App

To configure data loggers, spots and machines, it is necessary to download the “DynaPredict” app. The app is available on Android (version 5.0Ⓡ or above) and iOS (version 11 or above)  devices and is compatible with smartphones and tablets.

To install the app, simply search for “dynapredict” on the app store of the device (Google Play Store/App Store) and complete the download.

It is also possible to download the Android version from a computer by accessing the link: https://play.google.com/store/apps/details?id=solutions.dynamox.predict

Note: You must be logged in to your Google account and it must be the same that is registered on the Play Store of your Android device.

Accessing the Web Platform

To create the hierarchical sensor and gateway installation structure, as well as access the entire history of vibration and temperature measurements collected by the DynaLoggers, users have a complete Web Platform at their disposal.

Simply access the link https://dyp.dynamox.solutions/  and log in to the system with your access credentials.

Now you’ll have access to the Web Platform and can consult the data of all the registered DynaLoggers.

To learn more about the operation of the Platform and its features, please read the “DynaPredict Web” manual.

 

Vibrating Screens

Vibrating screens are used to separate materials according to their size and are especially important in mining processes. This machine basically consists of a motor, exciter mechanisms, bearings, screen mesh and vibration attenuators. It works by means of a precise vibratory movement with a suitable inclination angle, which provides benefits such as saving energy and reducing costs in the screening process.

Various components of a vibrating screen can fail, leading to repairs, downtime and various costs. The implementation of a continuous monitoring system for failure detection and other predictive maintenance strategies are fundamental for increasing the safety and reliability of this type of machinery.

Although the entire system has several vibration loads, which are inherent to the process or its components, it is still possible to relate these loads to specific parts of the equipment or the process that the equipment goes through. For example, harmonic loads are related to the vibrational isolation present in vibrating screens, or even transient vibrations can arise due to a loading impact/impulse on the screen.

In order to assertively monitor vibrational behavior, the installation of vibration sensors can become an important ally. However, when wired systems are installed in this type of machinery, they often result in high maintenance costs for cables and infrastructure. Thus, there are huge advantages to using wireless sensors, such as little or no maintenance costs, easy installation, automated and continuous monitoring (with the help of a gateway), among others.

To obtain good results with wireless vibration sensors, certain precautions must be taken, such as choosing a suitable sensor, mounting it correctly on the components to be monitored and setting an appropriate operating configuration.

As a practical example, for a screen like the one in the figure below, driven by exciter boxes, we recommend installing HF+ sensors, measuring up to 13kHz (blue DynaLogger), for motors, bearing housings and exciters. For the spring bases, it is recommended to install TcAs sensors of up to 2.5kHz (green sensor).


Figure: Indication of sensor mounting on vibrating screens

 

Location on the screen Number of DynaLoggers DynaLogger
Motor 2 HF+
Bearing housings 2 HF+
Exciter 1 2 HF+
Exciter 2 2 HF+
Spring basis 4 HF+ or TcAs
TOTAL 12  

In general, when monitoring motors, we recommend using two sensors, one for the drive end (DE) and one for the non-drive end (NDE). For the exciter mechanisms, we recommend using a sensor for each bearing housing. A DynaLogger HF+ is recommended per exciter cell. In the case of external bearings, HF+ sensors are also used for each bearing housing. Below are some photos of the installation on these components.

Motors

Circular exciter cells, exciters and bearing housings

In circular exciter cells, due to the casing, it is often not possible to mount the sensor directly on the component, so it is mounted as close as possible to the casing.

Spring bases

For the springs, it is recommended to install TcAs or HF+ sensors. Each of the spring bases should have a sensor installed in order to monitor the movement of the screen and compare the right and left sides, as well as the loading and unloading parts, in addition to the diagonal direction.

Field photos of sensors mounted at these locations:

It is worth mentioning that Dynamox’s sensors are IP 66 and IP 68 certified, guaranteeing sufficient robustness to be applied in environments with large amounts of particulates, high temperature and humidity, without compromising the quality of the data generated and without the need for maintenance or human intervention in collection.

Conveyor Belt

Conveyor belts are widely used in the transportation and material movement in diverse production processes. Generally, the equipment has a constant flow, moving materials from one point to another of the production process. The equipment is basically composed of motors, gearboxes, pulleys and their respective bearing casings.

The motor is responsible for activating the machinery that, due to its low operation speed and high loads, requires a coupled gearbox. Motors and gearboxes have already been specifically addressed before, so we will give more attention to the conveyor belt pulleys in this article.

     

Figure 1: Positioning and sensor model  indication for motors and gearboxes
 

The pulleys are responsible for activation, return, stretching and belt back, depending on their position on the equipment.  All pulleys are fixed to the equipment structure by means of bearing housings. The bearing housings, in turn, consist basically of bearings, bushings and nuts, and can be manufactured with a variable number of rolling elements, sizes, formats, etc. 

Keeping  bearing casings in good operating condition is an essential task for safety  and good performance of the production process.  The most common bearing failure modes are linked to the following causes:

  • Handling and transport;
  • Assembly errors;
  • Excessive stresses and loads;
  • Misalignments;
  • Inefficient lubrication;
  • Inefficient sealing.

These faults can generate defects in the cage, balls or rollers, inner and outer races.

These defects are identified through predictive maintenance, using vibration analysis. Two sensor models can be used to successfully monitor pulley bearings: 1) DynaLogger TcA+ with maximum frequency of 1KHz and 2) DynaLogger HF with maximum freq. of 6.4 KHz. Both models are IP66 and IP68 certified, being impermeable to dust and resistant to liquids, making it possible to install near the belt.  The sensor must be placed parallel to the rotation axis, and avoiding flexible bases and covers.


Figure 2: Conveyor belt and bearing housing of the drive pulley in detail





Figure 3: Conveyor schematic with application of DynaLoggers HF sensors in pulley bearing housing
 

In order to demonstrate the good use of sensors in conveyor belt pulleys let’s take a brief example.

Example: Fault monitoring appearing in the frequency of the outer race (highlighted in the green lines) of the 23152 CCK/W33 bearing with 84 RPM.


Figure 4: Fault spectra on bearing outer race

Electric Motors

How to monitor electric motors with the DynaPredict Solution:

Electric motors are responsible for the operation of the majority of industrial equipment to generate movement. Failures in this component may cause a halt in production as well as accidents.

Monitoring operational conditions is an important activity in the search for reliability of these assets.

Dynamox’s sensors allow for the online monitoring of parameters such as vibration and temperature which allow for the identification of potential defects and planned interventions, thereby reducing production downtime and increasing the efficiency of the production process as a whole.

Regarding the position of sensors at an electric motor, it is recommended the monitoring be done either from the drive end (DE) or non-drive end (NDE) as shown in the image below.

OBS: the NDE spot may offer certain challenges to the sensor mounting, because of the protective cover. If necessary, consider drilling a hole or cutting a notch in the cover to allow access to a rigid mounting location. Never install sensors on the motor terminal or cooling fins, which are parts that emit high levels of vibration and make fault analysis difficult.

Regarding this equipment, two types of sensors can be used:

  •  DynaLogger HF+. A sensor with a maximum frequency of 1300 Hz. This sensor is recommended for motors coupled to equipment of most importance. Due to its high frequency range, it is possible to identify early stage bearing or lubrication defects, as well as faults in the rotation frequency of the machine, such as with the TcAs.
  • DynaLogger TcAs . A Sensor with a maximum frequency around 2500Hz, which is recommended for low to medium criticality machines that do not present a history of bearing or lubrication related failures, since these defects may usually appear at higher frequencies. These sensors allow for the detection of faults in the rotational frequency of the machine, such as unbalance, misalignment, looseness and others. Besides,  this sensor can be useful to detect bearing defects in the later stage.

 

For the DynaLogger mounting, there are two main alternatives: studor adhesive mounting. See more details here under item 4.

Regarding defects,  the following root causes related to the machine problems, in terms of the axis and its characteristic frequencies, are indicated below:

 
Images of sensor installations:

A Good Practice Guide to Placing Sensors in Machines

The following sections will present best practices in the positioning of Dynamox vibration and temperature sensors for typical industrial machinery, such as motors, pumps, compressors, exhaust fans, etc.

The objective of the guide is to assist the user in choosing a suitable location for installation of the sensors, helping to obtain reliable and quality data that allows an effective predictive analysis.

The guide will also indicate which sensor best applies to each machine, focusing on the following models:

DynaLogger HF + : Triaxial temperature and vibration monitoring with a maximum frequency of 13000 Hz, performing telemetry and spectral analysis
DynaLogger TcAs : Triaxial vibration and temperature monitoring with frequency up to 2500 Hz, performing telemetry and spectral analysis
DynaLogger TcAg : Triaxial vibration and temperature monitoring with a maximum frequency of 2500 Hz. 

NOTE: The information contained in these sections are only recommendations and should not be taken as positioning rules.