DynaLogger HF+s PO

Dvnamox

Overview

The DynaLogger **HF+s PO** is designed to identify failure mode symptoms or defects in machinery and equipment in **a wide variety of field applications**. Due to its broad frequency spectrum, the HF+s PO delivers complete triaxial vibration monitoring for **low to highspeed equipment**. In addition, the solution features an **online platform**, with no local installation required, with several tools that assist in data analysis and enable constant monitoring of asset health.

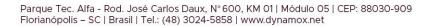
The **HF+s PO** DynaLogger has monitoring mode of spectral/waveform. In **spectral monitoring**, different tools can be used: spectrum, waveform (linear, circular and orbital), frequency filters, cepstrum, spectral envelope (demodulation), autocorrelation and multimetrics.

Wireless Monitoring Solution

- Compact sensor with wide frequency range.
- 🕆 Long battery life.
- (*) High resolution in frequency and amplitude.
- Tow speed applications (less than 10 RPM).
- Sensor with low spectral noise.
- Truly simultaneous triaxial measurement.
- Remote sensor updating.

Main assets monitored

- Motors
- Pumps
- Fans
- Gearboxes
- Rollers and Brakes
- Compressors and chillers
- Wind turbines
- Bearings in assets with high and low speed



Technical Specifications						
Model	HF+s PO					
Dimensions	39 x 39 x 64 mm					
Weight	222 g					
Case material	LEXAN™					
Material of pin and base	INOX 316L					
Color	Orange					
Mounting	Embedded Magnet					
Visual Signaling (LED)	Red / Green					
Accelerometer	MEMS Triaxial					
Accelerometer Impact Limit	10.000 g in 0,2 ms					
Operating temperature ^{1,2}	-10°C ≤ T ≤ 84°C					
Battery						
Voltage	3 V					
Autonomy ³	Up to a year					
Communication and System						
Bluetooth	BLE 5.3 / 2400 – 2483,5 MHz					

Bluetooth	BLE 5.3 / 2400 – 2483,5 MHz					
Free Field Range⁴	100 m					
RF Output Power	0,4 dBm					
App Communication	Android and iOS					

1 It is possible to monitor assets whose temperature exceeds 84°C, especially assets with intermittent characteristics and with room temperature below 24°C. However, Dynamox does not provide warranty in these cases. Specific condition for application outside explosive atmospheres. 2 The application at temperatures below 0°C impacts the battery autonomy. This effect worsens the lower the temperature, estimating a reduction of about 50% of useful life in applications at -20°C. Specific condition for application outside explosive atmospheres. 3 Estimated value for a standard monitoring condition with 1 or 2 daily spectral collections, telemetry intervals of 5 to 30 minutes and operating temperature between 20°C and 60°C. 4 Reference in free field. Bluetooth communication distance may vary with obstacles, interference and device (cell phone or Gateway)

Spectral Monitoring and Waveform						
	Spectrum					
	Frequency filters					
	Envelope (demodulation)					
	Cepstrum					
Analysis Tools	Spectral Waterfall					
	Autocorrelation					
	Circular and orbital waveform					
	Advanced metrics: Multiband RMS, peak to					
	peak, Kurtosis, FC, FC+, Carpet Energy, and					
	RMS Envelope.					
Frequency Response (\pm 5%)	5 kHz					
Frequency Response (<u>+</u> 3dB)	5 kHz					
Spectral noise density	< 75 μg/√Hz					
Sample Rate	Up to 26 kHz					
Minimum Frequency Resolution	0,006 Hz (8 bits) and 0,012 Hz (16 bits)					
Minimum Resolution in Amplitude ¹	16 mg (8 bits) and 61 µg (16 bits)					
Amplitude Range	Up to ±16 g					
Lines of Resolution (LOR)	98.304 (uniaxial) and 32.768 (triaxial)					
Maximum Frequency	571 Hz to 13 kHz (configurable)					
Maximum Collection Time ²	172,2 s (uniaxial) and 57,3 s (triaxial)					

Spectral Monitoring Settings Triaxial Simultaneous

Max.	Duration (s)						
Freq. (Hz)	Duration (S)						
13.145	0,08	0,16	0,31	0,62	1,25	2,5	24,0
6.572	0,16	0,31	0,62	1,25	2,5	5,0	12,0
2.629	0,4	0,8	1,6	3,1	6,2	12,5	4,8
1.314	0,8	1,6	3,1	6,2	12,5	24,9	2,4
571	1,8	3,6	7,2	14,3	28,7	57,3	1,0
N. Lines	1.024	2.048	4.096	8.192	16.384	32.768*	-

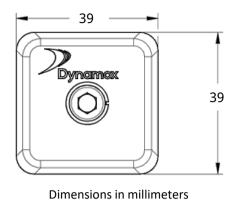
Uniaxial

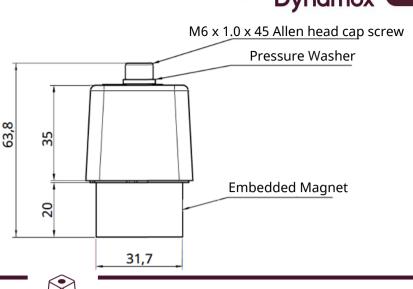
Max.	Duration (s)						RPM		
Freq. (Hz)	Duration (3)						min. ³		
13.145	0,08	0,16	0,31	0,62	1,25	2,5	3,7	7,5	8,0
6.572	0,16	0,31	0,62	1,25	2,5	5,0	7,5	15,0	4,0
2.629	0,4	0,8	1,6	3,1	6,2	12,5	18,7	37,4	1,6
1.314	0,8	1,6	3,1	6,2	12,5	24,9	37,4	74,8	0,8
571	1,8	3,6	7,2	14,3	28,7	57,3	86,0	172,0	0,3
N. Lines	1.024	2.048	4.096	8.192	16.384	32.768	49.152	98.304*	-

1 - Calculated amplitude resolution is based on the accelerometer digital output in μ g/LSB or mg/LSB.

2 - Check the setting in the 'Spectral Monitoring Settings' table.

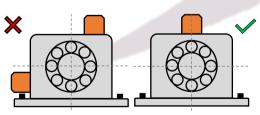
3 - Minimum RPM based on the longest measurement considering one full revolution of the shaft.


* - Setting available with 8 bits of amplitude resolution

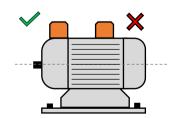


Geometric dimensions

Quick Mounting Guide


- Define the critical points of the machines to be monitored for the HF+s PO positioning;

- It is only necessary to position one HF+s PO per monitoring point, because the devices are triaxial;


- Avoid positioning in areas of the housings that present any stiffness loss. Example: cooling fins, covers, and protections. Try to position in rigid parts of the machine, preferably near the bearings;

 Align one of the axes of the HF+s PO with the actual axis of the machine. These axes are shown in the schematic above and on the body of the devices. A detailed installation guide can be found at Dynamox's <u>support website</u>.

It is recommended, as much as possible, to position the HF+s PO centrally in the component.

Positioning on cooling fins and covers is not recommended. Note: For motors, the recommendation is to position a sensor on the coupled side and another one on the opposite side for complete monitoring.

Regarding the types of mounting, the HF+s PO DynaLogger should be fixed with magnetic basis.

© 2023, Dynamox®. Dynapredict® is a registered trademark of Dynamox. All rights reserved.

The contents of this publication are presented for informational purposes only. Every care has been taken to ensure the validity of the information contained in this publication, but no liability can be assumed for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein. We reserve the right to modify or improve the specifications of our products at any time without notice.

Contact Us www.dynamox.net/contact-us

DAT-HF+s PO:052023-00/EN - [PUBLIC DOCUMENT]

